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Sports video analysis is a crucial aspect of elite competition preparation, but high-quality data
is essential to obtain reliable results. We present a method and an empirical model for evaluating
the influence of camera angle on the detection of ball bounces in table tennis. Our model char-
acterizes the non-negligible impact of the way games are recorded on accuracy, which should be
carefully considered when selecting camera positions and communicating analysis results.

1 Introduction

To improve performance of table tennis players, an approach is to rely upon video tracking during
competitions. Video tracking enables the collection of spatial information over time for objects in
the scene such as players, the ball, in a non-intrusive way [1]. These data fall into the categories
of tracking data [2], which have proven valuable for sports analysis in general. This information
can be used to identify players’ strengths and weaknesses, analyze their tactics [3], to prepare for
upcoming matches, and anticipate an opponent behavior during a rally [4]. Such tactical analysis
relies heavily on collected data, and numerous approaches have shown how to effectively use this
information for both analysis and visualization [5, 6, 3, 4]. Other research has shown that certain
positional data can be re-configured relatively to players [7] showing the importance of position in
analysis.

Figure 1: Various points of views collected during table tennis international competitions and their
positions in 3D space. On the table, the red axis corresponds to the x axis, the green axis to the
y axis and the blue axis to the z axis.

Our approach to collect such data relies upon video tracking techniques, particularly through
manual match annotation [8]. Indeed, despite the progress in the fields of computer vision and
deep learning, it remains challenging to accurately spot players and balls positions, and classify
events [9]. The automatic detection of the table tennis ball fits into a broader issue in the world of
sports: the detection of High-speed and Tiny Objects [10, 11]. Automated ball tracking remains



an open challenge as video quality and framerates are often low on TV. Traditional methods relied
on a combination of background or motion subtraction to detect moving objects, and colorimetry
to identify the ball among them [12, 13]. More recently, methods based on deep learning have
been employed [14, 15], primarily using convolutional neural networks to enable ball detection
within the image.

An underexplored area in sports ball tracking is understanding how camera angle impact the
tracking quality, regardless it is achieved manually or automatically. The specific characteristics
of table tennis mean that choices about how to record are important. Camera positions are
often chosen to provide the best view for spectators [16], which does not always make them
optimal for data collection. Figure 1 shows different camera angles from various table tennis
competitions often found on TV (these videos and their data are part of the dataset [17]). Indeed,
broadcasters often use fixed cameras, which must comply with specific positioning guidelines
that vary depending on the competition. Despite standardization efforts, notable differences can
be observed from one competition to another. Based on Figure 1, we can roughly identify three
distinct viewpoints: the rear view (in blue), the side view (in red), and the diagonal view (in green),
each provide its own type of geometric distortion of the table tennis game. We next define the
types of deformations and characterize their impact on ball bounce tracking accuracy.

2 Problem formulation

A table tennis match can be represented as a 3D scene. The different objects present in such
scene include the table (the only fixed object with the floor), and players, their rackets, and the
ball, which are moving objects. In an orthographic view, the table has two axes of symmetry:
one along the line formed by the net, and the other perpendicular to the net, passing through its
midpoint. We chose the origin of the 3D coordinate system as the point of intersection of these
two lines on the table, as shown in Figure 1 with a red, green and blue axis. A more abstract
representation of such scene is Figure 2 which illustrates the principle of projecting 3D elements
and onto the 2D image plane of the camera, as well as the geometric issues that arise from this
projection. This projection—and consequently the resulting geometric distortion—depends on
the camera, its intrinsic parameters, its position, and its orientation. As TV broadcast videos try
to minimize distortion, as mentioned by the European Broadcasting Union1 (EBU), a maximum
height distortion tolerance of between +1% and −1% is permitted for video broadcasts (except
for wide angles, where the tolerance is between +2% and −2%), we neglect intrinsic parameters,
in particular as we are primarily interested in camera angles rather than their distance. For the
example in figure Figure 2, which respects the actual dimensions of a table, the table projection
represents 0.18 times the table. This ratio means that 1 pixel is equivalent to approximately 5.5cm2

We can compute the projection p of any point P = [X,Y, Z, 1]T , where X,Y, Z are the coordi-
nates in 3D space, onto the camera image using the following equation:

p =

fx s cx
0 fy cy
0 0 1


︸ ︷︷ ︸

K (intrinsic)

·
[
R | t

]︸ ︷︷ ︸
extrinsic

· P︸︷︷︸
3D point

(1)

K is the camera’s intrinsic matrix:

• fx, fy: focal length in pixels (according to x and y)

• s : skew coefficient (often 0)

• cx, cy: optical center (usually the center of the image)

Extrinsic parameters:
1https://tech.ebu.ch/docs/tech/tech3249.pdf

2

https://tech.ebu.ch/docs/tech/tech3249.pdf


• R(3× 3) is the rotation matrix

• t(3× 1) is the translation vector

p ∈ R3 : homogeneous image coordinates Coordinates in pixels in the 2D image:

• (u, v) =
(

px

pz
,
py

pz

)

Figure 2: Projection of a 3D scene onto a 2D image showing how physical object change of visual
aspect when they are projected on the camera plan. This representation of the table corresponds
to the rear view, with a camera located at a height of 10m and a distance of 15m from the table.

The angle between the camera and the table affects the geometric shape of the table’s pro-
jection in the image. Positions of the camera (0, 0, z) for any strictly positive real number z are the
only ones that preserve the rectangular shape of the table surface without perspective distortion.
This rectangular shape is important in sports video analysis as it enables to calculate positions.
To measure the error between a real position on the table and its observation resulting from the
projection of this 3D scene into the camera’s 2D image, we used a simple Euclidean distance:

d(A,B) =
√

(x2 − x1)2 + (y2 − y1)2 (2)

,where: A = (x1, y1) is the annotated bounce and B = (x2, y2) is the ground truth. To give an
order of magnitude, we expect our ball bounce tracking to be below 10cm. We chose this level of
accuracy because, according to experts from the French Table Tennis Federation, it corresponds
to the accuracy achieved by professional players when aiming a particular position on the opposite
side.

3 Protocol

As we cannot collect ball bounce ground truth in TV broadcast videos, we recorded videos with
known position of balls on a regular table tennis table for various camera angles. The cameras
are located at x-axis distances of up to 4.20m, y-axis distances of up to 3.60m and z-axis heights
of between 0.14m and 4.24m above table level. To calculate the position of the cameras, we used
OpenCV’s calibration functions2, which allow us to determine the position of a camera using the
known positions of six points in 3D space. As reference points, we chose the six characteristic
points of the table (the four corners and two at the net), which is of a standard and known type.
We placed 8 balls (4 on each side). To position the balls, we measured the distances on the table
and marked the positions where the balls should be placed. The table was slightly rough, which
enabled to keep the balls in place without having to add anything to secure them. We recorded
13 short videos (3 seconds each) from three camera viewpoints: rear (5 captures), side (4), and
diagonal (4), each at varying distances and heights. Then we used an annotation tool we built
to annotate all bounces from all camera images. To annotate the ball’s positions, we have to
click on the ball’s position in the image, allowing for pixel-level annotation. The tool then uses a

2https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html

3

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html


homography to calculate the ball’s position on the table. For a point p = [u, v]T to compute the
real position (x, y) on the table, we use the equation:

p̃ =

uv
1

 ⇒ P̃ = H · p̃ =

x′

y′

w

 ⇒ (x, y) =

(
x′

w
,
y′

w

)
(3)

,where H(3×3) is the homography matrix computed with the Opencv functions3 using at least
4 known points in the plane and their correspondences in the projected plane (we chose the table
corners as references).

The annotation was done by the same person to ensure consistency in how positions were
annotated.

Figure 3 (b) shows the setup of the experiment. We then annotated the ball positions and
calculate the error rate with the ground truth. Figure 3 (a) shows the camera angles, ball ground
truth and annotation results.

Figure 3: (a) Positions of cameras we used in our experiment and balls positions on the table; (b)
view from the cameras.

Influence of the camera distance

To study the accuracy of annotations, we calculated the deviation of the annotated ball position
with their ground truth. We found that deviation over 10cm from ground truth come from three
of the 13 viewpoints present (two in rear view and one in diagonal view), which leads us to the
observations: the rear view is the one with the greatest deviations from ground truth, and the side
view shows little deviation.

A regression plot of the distance between annotation and ground truth as a function of distance
between camera and bounce, shows a positive slope 11 times over 13 as distance increases. We
used linear, exponential and power regressions and had the same result with almost or all positive
slopes. Statistically, this shows that as the distance between camera and bounce increases, the
distance between annotation and ground truth increases.

3https://docs.opencv.org/4.x/d2/de8/group__core__array.html
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Influence of the camera angle

To study the effect of camera angle on annotation precision, we developed a second protocol
where the camera’s x and y positions were fixed, and only z position varied. We placed more
balls on the table (40) to allow more comparisons. We performed 6 captures at different heights.
We used the same process as for the previous protocol to capture the data.

The linear regression of absolute distance between each camera’s annotation and the ground
truth as a function of the camera height presents a negative slope 40 times out of 40, which
means that the higher the height, the greater the precision. For each ball position on the table,
the camera height therefore influences the annotation precision. The lowest camera is located at
a height of 17cm relative to the table level, and it provides the most uncertainty in the annotation
with an average of 27cm and up to more than 50cm. From a height of 59cm (the second lowest
position), the precision for all points is less than 10cm. For the highest camera position at 130cm,
we obtain an average precision of 1.87cm.

4 Empirical model

As we are interested in capturing or anticipating the error rate in ball bounce accuracy, we built
an empirical model that will provide an accuracy estimation based on our experimental setup
(Figure 4). Using the deviations between the annotation and the ground truth as a function of
only the camera angle to the bounce, we performed an exponential regression. We chose to
use exponential regression because we noticed in the data that for small angle values there was
a high degree of variability in accuracy, and that above 30 degrees the accuracy stabilized and
approached 0. Based on this observation, we eliminated polynomial regressions, which made
it difficult to meet the stabilization constraints. We tested linear, logarithmic, exponential, and
power regressions. We calculated the coefficient of determination to determine how well the
regressions explain the data, and the exponential regression had the best value of 0.7 ( Table 1).
The regression is shown on Equation 4:

y(α) = a · ebα (4)

With α the camera angle, a initial value (when α = 0), and b the slope.

Regression coefficient of determination
Linear 0.52

Exponential 0.70
Logarithmic 0.68

Power 0.66

Table 1

Figure 4 shows that the smaller the camera angle, the greater the variation in accuracy, as
is the case with the camera position with the smallest angle, which has an accuracy of between
5cm and 40cm depending on the table zone. We also note that from a certain angle between
the camera and the table, annotated bounces for the same camera view have angles that vary
greatly from one another, giving overlapping annotation groupings for different views with different
angles.

This model confirms our initial hypothesis that camera angle impacts ball bounce tracking
precision. Still it has several limits beyond the few samples we used for our model. First, a
camera does not have the same angle of incidence with all points on the table, so points closer
to the camera have a larger angle than points further away. Also, our accuracy estimation is
calculated on a discretized table using a 1cm by 1cm grid, to limit calculation times. Still, this
work paves the way for further investigations and applications. For instance, Figure 5 shows
3 examples of accuracy predictions made on 3 different views from 3 matches using the model.
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Figure 4: The dots represent deviations between the annotations and the ground truth. On aver-
age, as the angle between the annotated bounce and the camera increases, so does the accuracy
of the annotation. An exponential regression can model this trend (red curve), with the initial value
a = 38.56 and the slope b = −0.115.

Using our model, we can already estimate the confidence on collected data and eventually provide
an error of margin either visually or for calculated statistics. We can see that, depending on the
precision of the annotations, there are certain trends: on (b), which has a precision of over 10cm
for the whole table, the top-down view of all bounces shows a certain trend, with balls close to the
net being closer for the bottom half of the table than for the top half of the table. Whereas on (a),
which has a precision of less than 3.5cm, no clear trend emerges. More work research is needed
on how to effectively communicate this confidence, either visually or statistically. Also more work
is needed to model the impact of other factors such as frame rate, image resolution and camera
distance on annotation accuracy.

5 Conclusion, Limits and Perspectives

In this work, we proposed a protocol for evaluating how camera angle impacts table tennis ball
bounce tracking. This approach is based on calculating the accuracy of bounce annotations on a
table tennis table according to the position of the camera and its angle relative to the table, com-
paring the ground truth with the annotations. Using the results obtained during the experiments,
we developed an empirical model that predicts the accuracy of ball bounce tracking based on the
position of the camera relative to the table.

This approach has certain limitations. The first is that we used a single camera to take mea-
surements with 4K resolution (4096 × 2160 pixels), whereas cameras for professional matches
often use a lower resolution. In addition, the camera position was closer than during competi-
tions, where they need to film the playing area in addition to the table.

We have identified several perspectives that we would like to explore in order to develop a
more robust prediction model. The first perspective is how the annotations are made. We plan
to take more measurements by placing more balls on the table, which will allow us to achieve
a greater coverage density and take more captures in order to cover camera positions closer
to those used in professional competitions. The second perspective concerns the model itself.
We have only taken into account the position of the camera, and we would like to investigate
whether the number of pixels making up the table influences accuracy. Finally, the last perspective
concerns the correction of rebound positions. By studying the direction of the differences between
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Figure 5: Example of precision estimates for different views taken from broadcasts and table
bounces we identified. (a) The side view, the area on the table with the lowest annotation accuracy
is 3.15cm. (b) The rear view, annotation accuracy on the table remains almost constant over the
whole table, with a difference between the worst and best accuracy of less than 1.5cm. (c) The
diagonal view, the accuracy of the annotation on the table varies greatly depending on the zone,
with a gap of almost 5cm between the two extremes.

the actual field data and the values obtained, we would like to study the feasibility of developing
a model to correct rebound positions based on the camera position and the position of rebounds
on the table.
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